Wahająca się kulka na nici porusza się, a zatem zgodnie z naszą wiedzą ma energię. Jaka jest natura tej energii? Skąd się bierze i co jest jej źródłem? Co jest w niej stałego, a co się zmienia. Jak przebiegają te zmiany?

Dziecko bawiące się na huśtawce porusza się ruchem drgającym. Jego prędkość oraz maksymalna wysokość zależą od kilku czynników, ale cały przebieg ruchu da się opisać dość prostymi prawami
Już wiesz
  • podać definicję ruchu drgającego;

  • posługiwać się pojęciami i wielkościami opisującymi ruch drgający: położenie równowagi, wychylenie z położenia równowagi, okres i częstotliwość drgań, amplituda drgań;

  • opisać ruch ciężarka na sprężynie i wahadła matematycznego;

  • podać, od czego zależy wartość energii: kinetycznej, potencjalnej grawitacji i potencjalnej sprężystości.

Nauczysz się
  • na przykładzie wahadła matematycznego i ciężarka na sprężynie rozróżniać rodzaje energii, jakie posiada ciało wykonujące ruch drgający;

  • wskazywać etapy ruchu, w których energia kinetyczna oraz energia potencjalna drgającego ciał rośnie, a w których maleje;

  • wskazywać położenia ciała drgającego, w których poszczególne rodzaje energii przyjmują wartość minimalną (zero) lub wartość maksymalną.

Zacznijmy od ponownej obserwacji wahadła matematycznego. Jeśli zawiesimy kulkę na nici i zostawimy ją w spokoju (czyli w stanie równowagi), to sama nie zacznie się wahać. Potrzebna jest ingerencja z zewnątrz – ktoś musi ją popchnąć, pociągnąć lub choćby dmuchnąć na nią. Innymi słowy należy wykonać pracę, aby wychylić ją z położenia równowagi. Wykonanie tej pracy oznacza, że kulce dostarczono energii równej wykonanej pracy. Gdy kulka jest w ruchu, to posiada energię kinetyczną. Energia ta zależy od prędkości. W ruchu wahadła prędkość się zmienia, zatem energia kinetyczna też się zmienia – rośnie i maleje na przemian. Czy kulka wahadła ma tylko energię kinetyczną?

Popatrzmy uważnie:

Wychylając kulkę z położenia równowagi do położenia A1, wykonujemy pracę. Praca ta zostaje zmagazynowana w postaci energii potencjalnej grawitacji, ponieważ wzrosła wysokość, na jakiej znajduje się kulka. Wartość tej energii jest równa pracy wykonanej przez siły zewnętrzne. Gdy kulkę puścimy, rozpocznie ona ruch w kierunku położenia równowagi. W momencie startu prędkość kulki ma wartość zero, zatem jej energia kinetyczna też ma wartość zero. Gdy kulka zbliża się do położenia równowagi O, rośnie prędkość kulki, rośnie też jej energia kinetyczna, a jednocześnie maleje energia potencjalna – ponieważ maleje wysokość, na jakiej kulka się w danej chwili znajduje. Przy przejściu przez położenie równowagi energia kinetyczna jest największa, a potencjalna osiąga minimalną wartość – przyjmijmy, że na tym poziomie równą zero. Podczas ruchu od punktu do punktu A2 zmniejsza się energia kinetyczna, a rośnie potencjalna. W punkcie zmiany zwrotu prędkości energia potencjalna osiąga największą wartość, kinetyczna zaś maleje do zera. Przez cały ten czas, jeżeli pominiemy oporu ruchu, suma energii kinetycznej i potencjalnej pozostaje stała i równa pracy, którą włożono, wprawiając wahadło w ruch.

Rozpatrzmy teraz sytuację z ciężarkiem zawieszonym na sprężynie.

Podczas rozciągania sprężyny wykonujemy pracę przeciwko sile sprężystości. Praca ta zostaje zmagazynowana w postaci energii potencjalnej sprężystości (wysokość ciężarka nie zmieniała się, ale zmianie uległa długość sprężyny). Gdy puścimy ciężarek, rozpocznie się jego ruch w stronę położenia równowagi. W chwili startu prędkość ciężarka była równo zero, podobnie jak wartość energii kinetycznej. W miarę zbliżania się ciężarka do położenia równowagi energia kinetyczna rośnie (bo rośnie prędkość ciężarka), a energia potencjalna sprężystości – maleje, ponieważ sprężyna staje się coraz mniej napięta. Przy przejściu przez położenie równowagi energia kinetyczna jest największa, a energia potencjalna osiąga wartość zero – sprężyna jest nienaciągnięta. Podczas ruchu od punktu O do punktu A2 zmniejsza się energia kinetyczna, rośnie zaś potencjalna (ściśnięta sprężyna też ma energię potencjalną sprężystości). W punkcie maksymalnego wychylenia energia potencjalna osiąga największą wartość, a kinetyczna maleje do zera. Przez cały ten czas suma energii kinetycznej i potencjalnej pozostaje stała (jeżeli pominiemy opory ruchu) i równa pracy, którą włożono w początkowe rozciągnięcie sprężyny.

Energia całkowita w ruchu drgającym związana jest z następującymi wielkościami:

  • amplituda – większą energię ma ciało drgające z większą amplitudą (więcej pracy trzeba włożyć, aby bardziej odchylić kulkę wahadła czy mocniej naciągnąć sprężynę);

  • częstotliwość – ciało drgające z większą częstotliwością ma większą energię;

  • masa drgającego ciała – związek energii z masą ciała był przedstawiony w rozdziałach o energii potencjalnej i energii kinetycznej.

*Podczas obserwacji rzeczywistych ruchów wahadła lub ciężarka na sprężynie widzimy, że amplituda drgań maleje.

Podsumowanie

  • Ciało wykonujące ruch drgający posiada dwa rodzaje energii: kinetyczną i potencjalną.

  • Dla wahadła matematycznego energia potencjalna to energia potencjalna grawitacyjna, a dla ciężarka na sprężynie jest to energia potencjalna sprężystości.

  • Podczas drgania zmienia się zarówno wartość energii kinetycznej, jak i energii potencjalnej.

  • Energia kinetyczna:

    • rośnie, gdy ciało drgające zbliża się do położenia równowagi;

    • maleje podczas oddalania się ciała od położenia równowagi;

    • osiąga największą wartość, gdy ciało przechodzi przez położenie równowagi;

    • przyjmuje wartość zero w punktach maksymalnego wychylenia z położenia równowagi.

  • Energia potencjalna:

    • maleje, gdy ciało drgające zbliża się do położenia równowagi;

    • rośnie podczas oddalania się ciała od położenia równowagi;

    • osiąga największą wartość w punktach maksymalnego wychylenia z położenia równowagi;

    • przyjmuje wartość zero, gdy ciało przechodzi przez położenie równowagi.

  • Suma energii kinetycznej i potencjalnej podczas drgania pozostaje stała i równa jest pracy wykonanej przez siły zewnętrzne podczas wychylenia ciała z położenia równowagi.

Praca domowa
Polecenie 1.1

Wykaż, że dla kulki wiszącej na dłuższej nici zmiana wysokości (przy odchyleniu o taki sam kąt od pionu) będzie większa niż dla kulki wiszącej na krótszej nici. Możesz wykonać odpowiedni rysunek.

Polecenie 1.2

Uzasadnij, dlaczego większa zmiana wysokości kulki umieszczonej na odchylanej od pionu nici spowoduje osiągnięcie większej wartości prędkości kulki podczas jej przechodzenia przez położenie równowagi.

Zadania podsumowujące lekcję

Ćwiczenie 1.1
Ćwiczenie 2
Ćwiczenie 3.1