Wróć do informacji o e-podręczniku Wydrukuj Pobierz materiał do EPUB Pobierz materiał do MOBI Zaloguj się, aby dodać do ulubionych Zaloguj się, aby skopiować i edytować materiał Zaloguj się, aby udostępnić materiał Zaloguj się, aby dodać całą stronę do teczki

Warto przeczytać

Zdolność rozdzielcza

Problem zdolności rozdzielczejzdolność rozdzielczazdolności rozdzielczej mikroskopu sprowadza się do odpowiedzi na dwa pytania:

  1. Jaki musi być rozmiar obiektu, aby był on w ogóle widoczny pod mikroskopem?

  2. Kiedy pod mikroskopem można rozróżnić kształt obiektu?

Odpowiedź na oba pytania jest podobna: nie można zaobserwować ani rozpoznawać kształtów obiektów, których rozmiar jest istotnie mniejszy od długości fali promieniowania, które w mikroskopie jest wykorzystywane. Długość fali światła widzialnego jest zawarta pomiędzy 0,4 mum (fiolet) a 0,7 mum (czerwień), a więc za pomocą mikroskopu optycznego nie można badać obiektów o rozmiarach mniejszych od ułamka mikrometra.

Działanie soczewki

Precyzyjny opis zdolności rozdzielczejzdolność rozdzielczazdolności rozdzielczej mikroskopu jest trudny. Dlatego tu ograniczymy się jedynie do prostych rozważań.

  1. Rys. 1. przedstawia działanie soczewki z punktu widzenia optyki geometrycznej. Promienie wybiegają z punktowego źródła Z i po dwukrotnym załamaniu przecinają się w jednym punkcie, tworząc obraz tego źródła. Jeżeli soczewka nie ma wad, to w ramach optyki geometrycznej obraz może także być idealnym punktem.

RKFHyhHhUrLHa
Rys. 1.
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.
  1. Inaczej sprawa przedstawia się w opisie falowym. Przypuśćmy, że źródło fali ma małe rozmiary – małe w porównaniu z długością fali świetlnej . Wywołuje ono falę rozbiegającą się, w najprostszym przypadku falę kulistą. Po dojściu do soczewki sytuacja się zmienia, fala zmienia się w falę zbiegającą się ku temu punktowi, który w opisie optyki geometrycznej stanowił obraz. Tę sytuację przedstawiono na Rys. 2. I tu pojawia się problem: fale o określonej długości  nie mogą „skupić się” idealnie w punkcie. A więc, w płaszczyźnie obrazu powstanie nie punkt, ale plamka o pewnej szerokości (a także o pewnej strukturze).

RDHI0og24TLAb
Rys. 2.
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.
  1. Przypuśćmy dalej, że mamy dwa bliskie źródła światła. Soczewka będzie teraz wytwarzać w płaszczyźnie obrazu dwie plamki, których środki będą odległe o pewną odległość . Jeżeli będzie istotnie mniejsze od szerokości plamek , nie będziemy w stanie stwierdzić, że mamy do czynienia z dwoma źródłami. Stąd wynika zdolność rozdzielczazdolność rozdzielczazdolność rozdzielcza soczewki i zbudowanego z soczewek mikroskopu.

Na omawiane zagadnienie można spojrzeć z punktu widzenia dyfrakcjidyfrakcjadyfrakcji korzystając z zasady Huygensa. Mówi ona, że każdy punkt, do którego dobiegła fala, staje się źródłem nowej fali kulistej.

Rozważmy uproszczony przykład dwuwymiarowy. Podzielmy prawą powierzchnię soczewki na wiele – na przykład 50 – krótkich elementów. Każdy z tych elementów potraktujemy jako źródło punktowe. Soczewka tak modyfikuje przychodzącą z lewej strony falę rozbiegającą się, aby fale ze wszystkich tych elementów wzmocniły się w położeniu geometrycznego obrazu. Schemat tego procesu przedstawiono na Rys. 3.

R1IudHURegEfF
Rys. 3.
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.

Rys. 4. przedstawia nałożenie się fal z takich właśnie 50 źródeł punktowych. Widoczna kropka przedstawia położenie obrazu geometrycznego. Zgodnie z tym, czego oczekiwaliśmy, fala sumaryczna nie zbiega się „do punktu”. Ma dość złożoną strukturę w całej przestrzeni.

Ru46vTgTso09M
Rys. 4.
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.

Fale zbiegające się

Falom zbiegającym zwykle poświęca się mniej uwagi niż falom rozbiegającym się. W domowych warunkach łatwo wykonać doświadczenia obrazujące zbieganie się fal w jednym punkcie.

Doświadczenie 1

Do doświadczenia potrzebne jest duże okrągłe naczynie z płaskim dnem, wypełnione wodą o głębokości około 3 cm, oświetlone od góry punktową lampą. Po uderzeniu w ściankę naczynia powstaje na wodzie impuls falowy zbiegający do środka. Taki impuls schematycznie przedstawia Rys. 5.

R1Tn829c4kM32
Rys. 5.
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.

Doświadczenie 2

Falę o charakterze bardziej podobnym do fali zbiegającej się z Rys. 2. można wytworzyć na wodzie w płaskim naczyniu (jak w Doświadczeniu 1). Należy ustawić w nim fragment okręgu wygięty z paska blachy lub innego giętkiego materiału (Rys. 6.). Falę pobudzamy, stukając w wygiętą blachę.

R1MXpKejqersz
Rys. 6.
Źródło: Politechnika Warszawska Wydział Fizyki, licencja: CC BY 4.0. Licencja: https://creativecommons.org/licenses/by/4.0/deed.pl.

W obu doświadczeniach obserwujemy, że powstające fale nie zbiegają „do punktu”, ale w każdej chwili zachowują pewien niezerowy rozmiar.

Słowniczek

Zdolność rozdzielcza
Zdolność rozdzielcza

(ang.: resolving power) zdolność do rozróżnienia dwóch źródeł światła znajdujących się obok siebie.

Dyfrakcja
Dyfrakcja

(ang.: diffraction) – ugięcie fali na krawędzi otworu. Gdy rozmiary otworu są porównywalne z długością fali, nakładanie się ugiętych fal powoduje naprzemienne wzmocnienia i wygaszenia fali.