Pokaż spis treści
Wróć do informacji o e-podręczniku

Zapisywanie treści zadań z użyciem liter

Rozwiązując różne zadania często zapisujemy wyrażenia arytmetyczne i obliczamy ich wartości.
W wyrażeniach arytmetycznych występują: liczby, znaki działań i nawiasy, np.

8 · 12 + 5,
32  4.

W zadaniach poniżej niektóre dane zapisane są za pomocą liter. Będziemy budować wyrażenia, w których, oprócz liczb, znaków działań i nawiasów, wystąpią litery.

Przykład 1

Kasia jest 3 razy młodsza od swojej mamy, a mama jest o 4 lata młodsza od taty Kasi.
Oznaczmy literą m wiek mamy.
Wówczas wiek Kasi to : 3, a wiek taty to + 4.
Przesuwaj suwak i zmieniaj wiek mamy. Sprawdź, ile lat w każdym przypadku będzie miała Kasia, a ile jej tata.

Animacja
Ćwiczenie 1
Ćwiczenie 2
Ćwiczenie 3

Olek jest 5 razy starszy od swojego brata Rafała. Wiek Rafała oznaczono literą a. Ile wynosi łączny wiek obu chłopców?

Ćwiczenie 4

Kanapka kosztuje a złotych, a jabłko b złotych. Ile złotych trzeba zapłacić za 2 kanapki i 3 jabłka?

Ćwiczenie 5

Oliwia ma w skarbonce p monet pięciozłotowych i d monet dwuzłotowych. Ile łącznie pieniędzy w monetach o tych nominałach znajduje się w skarbonce Oliwii?

Jak zbudowane jest wyrażenie algebraiczne

Ważne!
  • Wyrażenia, w których występują: liczby, litery, znaki działań i nawiasy nazywamy wyrażeniami algebraicznymi, np.

2 · a + 6,+ 3·  1, 8,4 +y+3
  • Każda z liter w wyrażeniu algebraicznym oznacza pewną liczbę.

  • Przy zapisywaniu wyrażeń algebraicznych wprowadzono pewne umowy, np.:

  • Nie zapisujemy znaku mnożenia między liczbą i literą lub między literami
    3 · p lub · 3 to 3p
    · c to ac

  • Nie piszemy liczb 1-1 przed literą.
    1 · x lub 1x to x
    -1 · x lub -1x to -x

  • Znak dzielenia zastępujemy kreską ułamkową.
    : b to b

Ćwiczenie 6

Zapisz wyrażenie algebraiczne, stosując podane wyżej uproszczenia.

  1. iloraz liczb xy

  2. iloczyn liczb 5c

  3. liczba dwa razy mniejsza od sumy liczb ab

  4. liczba o 6 większa od połowy liczby m

  5. suma kwadratu liczby a i liczby c

Ćwiczenie 7

Zeszyt kosztuje a złotych, długopis b złotych, a ołówek c złotych. Zapisz za pomocą wyrażenia algebraicznego,

  1. ile złotych trzeba zapłacić za zeszyt, długopis i 3 ołówki

  2. ile złotych trzeba zapłacić za 4 zeszyty i 2 ołówki

  3. o ile złotych więcej kosztuje 10 długopisów niż 5 ołówków

  4. ile razy więcej kosztuje zeszyt z długopisem niż zeszyt z ołówkiem

Wyrażenia algebraiczne w geometrii

Ćwiczenie 8
Ćwiczenie 9

Zapisz za pomocą wyrażenia algebraicznego pole narysowanej figury.

Ćwiczenie 10

Wartość liczbowa wyrażenia algebraicznego

Przykład 2

W pewnej klasie 6 b jest d dziewcząt, a chłopców jest o 3 więcej niż dziewcząt.
Liczbę wszystkich uczniów tej klasy możemy zapisać za pomocą wyrażenia: + d + 3 .
Obliczmy, ilu uczniów jest w tej klasie, jeżeli jest w niej

  1. 10 dziewcząt

  2. 12 dziewcząt

  3. = 10 zatem + d + 3 = 10 + 10 + 3 = 23

  4. = 12 zatem + d + 3 = 12 + 12 + 3 = 27

Wartość wyrażenia algebraicznego za każdym razem jest inna. Zależy ona od tego, jaką liczbę wstawimy zamiast litery w tym wyrażeniu.

Ćwiczenie 11

Oblicz wartość wyrażenia 2+ 1 dla

  1. = 5

  2. = 1,3

  3. = 212

  4. = -4

Ćwiczenie 12

Zmieniając za pomocą suwaków liczby mn możesz sprawdzić, jaka jest wartość wyrażenia
-2+ 0,5n dla wybranych liczb mn.

-2+ 0,5= -2  11 + 0,5  16 = -14

Podaj wartość wyrażenia -2+ 0,5n dla

  1. = 6, n = -10

  2. = -8, n = 4

  3. = -17, n = -12

  4. = 11, n = 16 

Ćwiczenie 13

Oblicz wartość wyrażenia 4x2  y dla

  1. = 2, y = 3

  2. = -5, y = -10

  3. = 1,2 , y = 5,76

  4. = 56, y = 79